Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(12): 13704-13713, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559999

RESUMEN

The integration of low-dimensional nanomaterials with microscale architectures in flexible pressure sensors has garnered significant interest due to their outstanding performance in healthcare monitoring. However, achieving high sensitivity across different magnitudes of external pressure remains a critical challenge. Herein, we present a high-performance flexible pressure sensor crafted from biomimetic hibiscus flower microstructures coated with silver nanowires. When compared with a flat electrode, these microstructures as electrodes display significantly enhanced sensitivity and an extended stimulus-response range. Furthermore, we utilized an ionic gel film as the dielectric layer, resulting in an enhancement of the overall performance of the flexible pressure sensor through an increase in interfacial capacitance. Consequently, the capacitive pressure sensor exhibits an extraordinary ultrahigh sensitivity of 48.57 [Kpa]-1 within the pressure range of 0-1 Kpa, 15.24 [Kpa]-1 within the pressure range of 1-30 Kpa, and 3.74 [Kpa]-1 within the pressure range of 30-120 Kpa, accompanied by a rapid response time (<58 ms). The exceptional performance of our flexible pressure sensor serves as a foundation for its numerous applications in healthcare monitoring. Notably, the flexible pressure sensor excels not only in detecting subtle physiological signals such as finger and wrist pulse signals, vocal cord vibrations, and breathing intensity but also demonstrates excellent performance in monitoring higher pressures, such as plantar pressure. We foresee that this flexible pressure sensor possesses significant potential in the field of wearable electronics.

2.
Small ; 20(15): e2306655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009791

RESUMEN

Flexible sensors are highly flexible, malleable, and capable of adapting todifferent shapes, surfaces, and environments, which opens a wide range ofpotential applications in the field of human-machine interface (HMI). Inparticular, flexible pressure sensors as a crucial member of the flexiblesensor family, are widely used in wearable devices, health monitoringinstruments, robots and other fields because they can achieve accuratemeasurement and convert the pressure into electrical signals. The mostintuitive feeling that flexible sensors bring to people is the change ofhuman-machine interface interaction, from the previous rigid interaction suchas keyboard and mouse to flexible interaction such as smart gloves, more inline with people's natural control habits. Many advanced flexible pressuresensors have emerged through extensive research and development, and to adaptto various fields of application. Researchers have been seeking to enhanceperformance of flexible pressure sensors through improving materials, sensingmechanisms, fabrication methods, and microstructures. This paper reviews the flexible pressure sensors in HMI in recent years, mainlyincluding the following aspects: current cutting-edge flexible pressuresensors; sensing mechanisms, substrate materials and active materials; sensorfabrication, performances, and their optimization methods; the flexiblepressure sensors for various HMI applications and their prospects.


Asunto(s)
Electricidad , Dispositivos Electrónicos Vestibles , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...